Grue-some confusion

Having concluded at the end of my previous post that the study of statistics has helped me to appreciate the value of the philosophy of science, it is only fitting to point to an instance of the reverse: Statistics can be a resource for solving philosophical problems.

Nelson Goodman’s new riddle of induction is supposed to show that no purely syntactical theory of confirmation is possible (i.e. one that does not depend on the meaning of the terms that appear in the argument, like “raven” or “black”). Here’s an outline of the argument. Goodman introduced the term “grue” and defined it thus: an object is grue if it is green before a certain date D or if it is blue after D. So an emerald is grue before D, while the sky is grue after D. (Note well that nothing changes color: This is all about the terminology we use to describe things.) Obviously, grue-like terms make it difficult to generalize from empirical observations. Even if we have examined a vast number of emeralds under all kinds of conditions and have found all of them to be grue, this fact does not generalize. After the future date D, we will encounter emeralds that are not grue. Thus, it is entirely hopeless to attempt to specify how many observations or how many variations of circumstances are needed before we can arrive at the general claim that “all emeralds are grue”.

It is a sound intuition to think that something must be fishy about grue-like terms. However, it has been difficult to show why precisely grue-like terms are inadmissible in science. Many attempts to solve the problem failed: Most famously, attempts to show that time-relative terms in general are inadmissible didn’t succeed, despite their intuitive plausibility. It was also proposed that the relevant distinction might be between terms that are “projectible” and those that are not, and this led to a search for criteria of projectibility. Others suggested that true confirmation is only possible where so-called “natural kinds” are concerned. In general, many philosophers concluded that the grue-problem may be intractable and may represent a deep problem for all theories of confirmation.

However, I think that a robust understanding of the problem (or much of the problem) was eventually found — an understanding based on statistical thinking. It is an excellent instance of progress in philosophy of science. Here’s a brief review of the proposed solution. Goodman was thinking about a sampling operation: You look at n members of a population in order to form an opinion about the properties of the entire population. To use his example, you conclude that all emeralds are green from sampling n emeralds. To use a more realistic example, you might want to predict how a country is going to vote based on a sample of 2000 likely voters. Now, it is well known that sampling fails if certain assumptions aren’t met. One of these assumptions is that the act of sampling must not alter the property being sampled. If my asking people “who will you vote for next Tuesday?” causes them to feel more established and therefore to vote for the incumbent party, my survey will overestimate the incumbents’ share of the vote. It turns out that something similar holds for the term grue: The fact that I sample an emerald before date D makes it “grue”, while otherwise it would be “not grue”. Thus, my sampling of an emerald can change its “grueness”. Clearly, then, this violates the rules of sampling. It is this statistical reasoning, and not some elaborate philosophical theory, that explains why “grue” is an inadmissible predicate.

The matter is, of course, more complex than I make it out to be; and there may indeed exist instances of grue-like problems that cannot be treated like this. For those who wish to go beyond my three paragraphs, I recommend this paper by Peter Godfrey-Smith.

What I learned by discovering statistics using R

I would summarize many of my driving interests under the heading of “scientific epistemology”. However, for a long time I had an egregious blind spot: statistics. Although I read my way through Rohlf and Sokal’s classic text “Biometry” six years ago, it left me with something less than a working understanding of statistics as a research scientist would use it. Whether this was my fault or the text’s, or simply a matter of incompatibility, is hard to say.

To ameliorate the situation, I spent much of my spare time last April plowing through each and every chapter of “Discovering Statistics Using R” by Andy Field (and co-authors). On the whole, it was an immensely enjoyable experience. Here are a few of my meta-insights.

  1. You can grasp the statistical concepts without becoming a mathematician. I sometimes have difficulty assimilating knowledge if I fail to understand its foundations — e.g. to learn how a drug is used without understanding its molecular mode of action. This difficulty persisted even after I had identified it as a hindrance. (This is part of why I wandered from medicine into the history and philosophy of science, where an obsession with foundations is generally a natural advantage.) Analogously, I was worried that I might get stuck with my statistics text as soon as I encountered some mathematical theorem that I had to accept but couldn’t understand with reasonable effort and within reasonable time. Happily, I found it easy to deal with mathematical black boxes in statistics. I think two things helped. First, DSUR introduces the black boxes efficiently and often labels them explicitly, which makes it easier to accept them. Second, many statistical black boxes can be grasped intuitively. For instance, there is the “variance sum law”, which states that the variance of the differences or sums of two independent variables is equal to the sum of the variances of the two variables (this matters, for example, if you are testing whether the means of two populations differ in a t-test). I don’t know how you prove this (although it is not difficult to imagine the outlines of a proof), but I nevertheless find it highly plausible that the variance sum law holds. Other questions are more difficult — e.g., why do correlation coefficients range from -1 to 1? Mathematician friends tell me that the answer to this is nontrivial. Nevertheless, I did not have any difficulty accepting it, and so my education in statistics could proceed. I found that there were many similar instances of very tolerable black boxes.
  2. Statistics should be seen in relation to concrete study designs. When I read “Biometry”, I think I lost the forest for the trees: I learned about the theory of statistics but failed to see how it applied to concrete research situations. One of the strengths of DSUR is that it is pretty clear about how each statistical method relates to familiar types of study designs.
  3. The importance of the computer is hard to exaggerate. “Biometry” was originally written in the 1970s, and its primary tool was the pencil: It taught me how to do statistics by hand, if necessary. I get that this can be useful for teaching concepts. But in practice (and in 2014) I found it vastly more enjoyable to study statistics in close contact with R, where I learned how to actually work on more or less realistic data sets. I like to joke that I love computers and will take any excuse to spend more time with them. More seriously, I think that doing statistics is pretty similar to programming: Understanding the concepts is one thing, but you also need to learn which functions take which values, where to put the semicola, and what the error messages mean. There is a craft to statistics, and I think that familiarity with the craft makes it easier to assimilate the theory.
  4. Emotions matter. It is well know that learning without positive emotion is difficult for us humans. Importantly, therefore, DSUR helped me to get excited about statistical methods. I get that you should have a good conceptual grasp of the assumptions that a data set must meet if you want to do an ANOVA. But studying those assumptions before you have ever done an ANOVA and thus before you have discovered the potential power of the method is, frankly, boring. DSUR helps you to see — more importantly, to feel — that statistical methods are really cool and powerful, and this helps you through more tedious things like checking whether your data are homoscedastic.
  5. Philosophy of science is useful. During the first half of the book, in the throes of young romance, I felt that statistics is the key to understanding scientific epistemology and in some sense removes the need for a philosophy of science. But I quickly recuperated: I now think with renewed conviction that the philosophy of science is tremendously important. It should be taught alongside statistics to students. One cannot make sense of scientific methodology by understanding only statistics but none of the concepts that traditionally live in the philosophy of science. Statistics texts hardly touch many of these questions: What is a cause? What is the logic of causal inference, and what are its prerequisites? (Which is the basis for asking: And how does statistics help in inferring causes?) What is the epistemological role of scientific models? What are mechanisms, and what does it take to ascertain them? How do causal processes at different levels of organization relate to each other? What is an explanation, and what role does explanatory power play in the confirmation of scientific hypotheses? Many of these questions do not (currently) have definitive answers. But I do think (based on experience) that most working scientists have strong intuitions about them that help them in their epistemological work — and if nothing else, the philosophy of science can prime these intuitions and help to produce better scientists. To my surprise, then, an immersion in statistics has helped me to better appreciate one of my parent disciplines (which are, in this order: biomedicine, history of science, and philosophy of science).