Ann Moyal’s book on the history of the platypus is a good read. It gives an overview of the difficulties the platypus posed for zoology and of the way it gradually came to be understood in light of evolution. Along the way, we meet many of the great figures of the history of 19th century biology – Georges Cuvier, Geoffroy Saint-Hilaire, Richard Owen, Charles Darwin, Thomas Huxley – and learn something about their scientific context. Much of this material is familiar, but it works. There are also some very nice platypus anecdotes spread throughout the book, such as Churchill’s attempts to import a platypus to Britain in the middle of the second World War (it came to be known as “Winston”).
However, something about the book irked me, and I think it relates to a broader issue in the history of science. As the etiquette for serious historians of science dictates, Moyal discusses the past entirely on its own terms. This means that we do not get much of a primer on platypus biology early on in the book, and as past scientists formulate theories about the platypus, we are rarely told whether their findings were true or not. This approach makes for a cognitively challenging read. Sometimes it would be nice just for orientation to know which early findings were true or false, why past scientists were mistaken, and how exactly they squared their (false) theories with empirical findings. Far from resulting in de-contextualized history of science, I believe that this would make it easier to appreciate the social context of scientific discovery – to understand in some detail how empirical, social and personal forces interacted. As it stands, the history is often just one thing after another, and in some sense we wind up as ignorant of the overall process as the historical actors themselves. Surely that’s not the goal of historiography.
More generally, I felt that a more distanced view would have improved the book. Much of the second half is structured around a “race” (there are shades of The Double Helix here) to determine the platypus’s mode of reproduction – oviparous, ovoviviparous, or viviparous. This ends with what is perhaps the most famous telegram in the history of science: “monotremes oviparous, ovum meroblastic”. (The platypus lays eggs, and their development is more like reptiles than mammals.) However, it seems to me that much of the real intellectual action of the case was in the struggle to use different kinds of information about the platypus – including, but not limited to, its mode of reproduction – to see where it belongs in the overall scheme of biological classification. I would have loved to read more about that side of the story. But I guess it can’t be told unless we relax and make good use of our privileged present-day view of the case.
This is not to say that Moyal stays strictly in the past. In the final chapters, she reports on present-day findings about the platypus. These are among the most fascinating chapters. For instance, the platypus’s snout (famously “duck-like” in dead specimens, hence its scientific designation Ornithorhynchus anatinus, or “duck-like bird snout”) is in fact a unique organ for electrolocation. The platypus uses it to locate its prey as it dives with eyes and ears closed. In this respect the platypus is a highly specialized modern species rather than a relic of our evolutionary past. When I read about this, I thought it would have made for a great essay by Stephen Jay Gould. Of course, SJG was way ahead of me: you will find his highly enjoyable take on the story in Bully for Brontosaurus.
(( CO:D